Introduction of Aluminum Nitride Ceramic Materials
Aluminum nitride is a high-performance ceramic with excellent electrical insulation and thermal conductivity, ideal for heat dissipation in semiconductor processing equipment. Its plasma resistance and mechanical strength make it crucial in optoelectronics and high-temperature components.
E-mail:sales01@hkceramic.com

Plate material mm (L, H, and W can be selected as needed, customization supported) | ||||||||||||
L | 3 | 5 | 8 | 10 | 12 | 15 | 18 | 20 | 22 | 25 | 28 | More (Customizable) |
W*H | 100*100 | 90*140 | 95*145 | 150*150 | 160*160 | 122*290 | 110*275 | More (Customizable) | ||||
Rod material mm (W, Ø can be selected as needed, customization supported) | ||||||||||||
Ø | 0.5 | 0.8 | 0.9 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | More (Customizable) |
W | 60 | 100 | 120 | 200 | More (Customizable) |
Aluminum nitride (Aluminum Nitride, AlN) is an advanced ceramic material highly valued in high-tech industries for its excellent thermal conductivity and electrical insulation. Aluminum nitride also boasts high mechanical strength and stable chemical properties, making it an ideal choice for electronics and industrial applications.
1. Excellent Thermal Conductivity and Electrical Insulation
Aluminum nitride combines very high thermal conductivity with excellent electrical insulation, making it highly valuable in applications that require efficient heat dissipation alongside electrical isolation.
- Efficient Thermal Management Solutions: Aluminum nitride’s high thermal conductivity makes it an ideal heat dissipation material for high-performance electronic devices such as power semiconductors, high-density integrated circuits, and high-frequency electronic components. These applications often require materials to rapidly and effectively dissipate heat to prevent performance degradation or damage due to overheating.
- Electrical Applications: While maintaining high thermal conductivity, aluminum nitride also exhibits outstanding electrical insulation. This is crucial for insulation components in applications like power conversion equipment and high-voltage electrical applications, where materials need to efficiently transfer heat without conducting electricity.
2. Thermal Expansion Coefficient Matching Silicon and Excellent Plasma Resistance
Aluminum nitride’s thermal expansion coefficient closely matches that of silicon, a critical feature along with its plasma resistance, making it particularly important in semiconductor manufacturing.
- Semiconductor Manufacturing: Due to its thermal expansion coefficient matching silicon, aluminum nitride minimizes thermal stresses caused by temperature variations when used as substrates or thermal interface materials in semiconductor devices. This is essential for enhancing the reliability and performance of semiconductor devices.
- Plasma Resistance: During semiconductor processing, components often endure harsh plasma environments that can corrode or damage weaker materials. Aluminum nitride’s excellent plasma resistance allows it to maintain stability in these conditions, preserving both performance and structural integrity.
These characteristics of aluminum nitride underscore its critical importance in modern high-tech fields, particularly in high-performance electronic devices and semiconductor manufacturing. Its exceptional physical properties not only enhance equipment performance but also extend product longevity, providing reliable material solutions for a variety of demanding industrial applications.
Type | Unit | Aluminum Nitride |
Material | \ | ALN |
Colour | \ | Gray |
Density | g/cm3 | 3.3 |
Type | Unit | Aluminum Nitride |
Flexural Strength(20℃) | Mpa | 470 |
Compressive Strength(20℃) | Mpa | 2100 |
Modulus of Elastic(young)(20℃) | Gpa | 320 |
Tracture Toughness(20℃) | MPam½ | 2.6 |
Poi sion’s Ratio(20℃) | \ | 0.24 |
Hardness HRA(20℃) | HRA | 87 |
Vickers Hardness(HV1) | Gpa(kg/mm2) | 1122 |
Rockwell Hardness(45N) | R45N | 78.5 |
Type | Unit | Aluminum Nitride |
Thermal Expansion Coefficient | 10-6K-1 | 4.6 |
Thermal Conductivity(20℃) | W/mk | 170 |
Thermal Shock Resistance | △T.℃ | 400 |
Specific Heat Capacity | J/g·k | 0.72 |
Max working Temperature(In Oxidizing) | ℃ | 1000 |
Type | Unit | Aluminum Nitride |
Vol une Resistivity at 20℃ | Ωcm | 2.75*1014 |
Dielectric Strength | KV/mm | 17 |
Dielectric Constant | \ | 8.38 |
Dielectric LossAngle at 20℃,1MHz20℃ | tanδ | 3*10-3 |
*For more details, please feel free to contact our company.

Boron nitride ceramic tube sleeve
Material:Boron Nitride Ceramics
Describe:Explore boron nitride ceramic tube sleeves with precise dimensions and smooth surfaces for machinery. Their high melting point and thermal shock stability ensure reliable performance in high temperatures, resisting cracking and deformation.

Slotted silicon nitride ceramic plates
Material:Silicon Nitride Ceramics
Describe:Slotted silicon nitride ceramic plates and precision porous ceramic substrates are pivotal in industrial and technological fields. Renowned for high temperature stability, chemical inertness, and mechanical strength, they drive advancements in various industries.

Alumina Ceramic Thin Machinery Robot Arm
Material:Alumina ceramics
Describe:Alumina Ceramic Robot Arm, also known as porous retaining rings, feature precise designs with drilled holes for secure connection. Their high hardness and strength ensure stability and durability under pressure, ideal for long-lasting equipment performance.

Aluminum Nitride Ceramic Plate Sheet
Material:Aluminum Nitride Ceramics
Describe:Aluminum nitride (AlN) ceramic Sheet offer precise perforation for mechanical support, electrical insulation, and thermal management enhancement in precision applications.

Customize Alumina Structural Parts Processing 99.5/99.7 Ceramic Manufacturer
Material:Alumina ceramics
Describe:Alumina Structural Parts Processing 99.5/99.7 Ceramic Manufacturer, also known as porous retaining rings, feature precise designs with drilled holes for secure connection. Their high hardness and strength ensure stability and durability under pressure, ideal for long-lasting equipment performance.

Alumina Ceramic Hollow Tube
Material:Alumina ceramics
Describe:Alumina Ceramic Hollow Tube, essential in high-tech and industrial sectors, offers excellent physical and chemical properties. Its high-purity alumina base and precision manufacturing ensure exceptional performance in extreme environments, from high temperatures to precise electrical insulation. Whether for structural support or electrical insulation, these tubes deliver reliable, durable performance.