Introduction of Silicon Carbide Ceramic Materials
Silicon carbide (SiC) is a corrosion-resistant ceramic used in mechanical seals and pump components, maintaining strength up to 1400°C. It’s ideal for high-temperature parts in petrochemicals, aerospace, and automotive industries, driving technological advancements.
E-mail:sales01@hkceramic.com

Plate material mm (L, H, and W can be selected as needed, customization supported) | ||||||||||||
L | 3 | 5 | 8 | 10 | 12 | 15 | 18 | 20 | 22 | 25 | 28 | More (Customizable) |
W*H | 100*100 | 90*140 | 95*145 | 150*150 | 160*160 | 122*290 | 110*275 | More (Customizable) | ||||
Rod material mm (W, Ø can be selected as needed, customization supported) | ||||||||||||
Ø | 0.5 | 0.8 | 0.9 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | More (Customizable) |
W | 60 | 100 | 120 | 200 | More (Customizable) |
Silicon carbide (SiC) is a high-performance ceramic material known for its excellent high-temperature stability, conductivity, and corrosion resistance.
1. Outstanding Strength at High Temperatures
Silicon carbide maintains its strength even at extremely high temperatures, making it an ideal choice for many high-temperature applications.
- High-Temperature Industrial Applications: Silicon carbide is widely used in high-temperature industrial fields such as furnaces, heat treatment equipment, and high-temperature reactors. Its high temperature strength and stability allow it to maintain structural integrity at temperatures up to 1400°C and even higher, enduring extreme thermal stresses and pressures.
2. Excellent Thermal and Electrical Semiconductor Performance
Silicon carbide exhibits extremely high thermal conductivity and electrical semiconductor performance, making it widely applicable in the electronics industry and high-power appliances.
- Thermal Conductivity: Silicon carbide is an excellent thermal conductor, surpassing the conductivity of many metals. This makes it very useful in applications requiring efficient heat dissipation, such as heat sinks for electronic devices and electronic packaging materials.
- Electrical Semiconductor Performance: Silicon carbide has semiconductor properties with high electron mobility and low resistivity, performing exceptionally well in power electronic devices. For instance, silicon carbide power devices exhibit lower losses and higher efficiency in high-temperature and high-frequency environments.
3. High Hardness and Corrosion Resistance
Silicon carbide possesses outstanding chemical and physical stability, demonstrating high hardness and corrosion resistance.
- High Hardness: Silicon carbide has hardness close to that of diamond, providing excellent wear resistance and scratch resistance. This makes it highly useful in manufacturing wear-resistant components and cutting tools.
- Corrosion Resistance: Due to its chemical stability, silicon carbide exhibits good corrosion resistance to many chemicals, allowing for long-term stability in chemical processing and liquid handling equipment.
The versatility and exceptional performance of silicon carbide make it widely applicable across multiple industries, including high-temperature industrial applications, electronic devices, mechanical engineering, and chemical industries. Its high temperature stability, thermal conductivity, semiconductor properties, as well as high hardness and corrosion resistance, position it as a crucial engineering material driving technological advancements and innovations in various fields.
Type | Unit | Silicon Carbide |
Material | \ | SiC |
Colour | \ | Black |
Density | g/cm3 | 3.1 |
Type | Unit | Silicon Carbide |
Material | \ | SiC |
Colour | \ | Black |
Flexural Strength(20℃) | Mpa | 400 |
Compressive Strength(20℃) | Mpa | 2600 |
Modulus of Elastic(young)(20℃) | Gpa | 410 |
Tracture Toughness(20℃) | MPam½ | 4 |
Poi sion’s Ratio(20℃) | \ | 0.16 |
Vickers Hardness(HV1) | Gpa(kg/mm2) | 2100 |
Rockwell Hardness(45N) | R45N | 88 |
Type | Unit | Silicon Carbide |
Material | \ | SiC |
Colour | \ | Black |
Thermal Expansion Coefficient | 10-6K-1 | 4 |
Thermal Conductivity | W/mk | 100 |
Thermal Shock Resistance | △T.℃ | 400 |
Specific Heat Capacity | J/g·k | 0.67 |
Max working Temperature(In Oxidizing) | ℃ | 1600 |
Type | Unit | Silicon Carbide |
Material | \ | SiC |
Colour | \ | Black |
Vol une Resistivity at 20℃ | Ωcm | 105 |
*For more details, please feel free to contact our company.

Zirconia Ceramic Rod
Material:Zirconia Ceramics
Describe:Zirconia ceramic shafts and positioning plungers offer high temperature and wear resistance, crucial for motors, pumps, and mechanical transmissions in modern industry.

Magnesium Stabilized Zirconia Ceramic Polished Sealing Ring
Material:Zirconia Ceramics
Describe:Our magnesia stabilized zirconia polished seal rings are engineered for superior mechanical strength, fracture toughness, and wear resistance. Compared with alumina ceramics, zirconia provides enhanced durability, while the magnesia stabilization ensures high thermal and chemical stability. With a polished surface finish, these seal rings achieve low friction, excellent sealing performance, and extended service life, making them an ideal choice for...

Ultra-thin silicon nitride ceramic plate
Material:Silicon Nitride Ceramics
Describe:Explore ultra-thin silicon nitride ceramic plates for high-temperature environments like heat exchangers and combustion chambers. Ideal for lightweight, high-strength applications in semiconductor manufacturing and other industries, their chemical stability and low thermal expansion coefficient ensure superior mechanical and thermal performance.

Silicon Nitride Ceramic Rod
Material:Silicon Nitride Ceramics
Describe:Silicon nitride ceramic rod is a high-performance engineering ceramic material with excellent properties such as high strength, high temperature resistance, wear resistance, corrosion resistance, low thermal expansion, and insulation. It is widely used in industry, semiconductors, medical treatment, scientific research and other fields.

Silicon nitride ceramic bearing rollers
Material:Silicon Nitride Ceramics
Describe:Discover silicon nitride (Si3N4) ceramic bearing rollers, known for their high strength and wear resistance. Widely used in aerospace, automotive, electronics, and industrial machinery, these rollers enhance bearing durability, reduce maintenance, and extend equipment lifespan.

Ultra-large Silicon Nitride Ceramic Sleeves
Material:Silicon Nitride Ceramics
Describe:Discover a silicon nitride ceramic sleeve with precise machining and a smooth outer surface, ensuring reliability in high-performance applications. Ideal for large-scale mechanical equipment like pumps or high-pressure systems, silicon nitride offers exceptional mechanical strength, high temperature resistance, thermal shock stability, and abrasion resistance.