Introduction of Aluminum Nitride Ceramic Materials
Aluminum nitride is a high-performance ceramic with excellent electrical insulation and thermal conductivity, ideal for heat dissipation in semiconductor processing equipment. Its plasma resistance and mechanical strength make it crucial in optoelectronics and high-temperature components.
E-mail:sales01@hkceramic.com

| Plate material mm (L, H, and W can be selected as needed, customization supported) | ||||||||||||
| L | 3 | 5 | 8 | 10 | 12 | 15 | 18 | 20 | 22 | 25 | 28 | More (Customizable) |
| W*H | 100*100 | 90*140 | 95*145 | 150*150 | 160*160 | 122*290 | 110*275 | More (Customizable) | ||||
| Rod material mm (W, Ø can be selected as needed, customization supported) | ||||||||||||
| Ø | 0.5 | 0.8 | 0.9 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | More (Customizable) |
| W | 60 | 100 | 120 | 200 | More (Customizable) | |||||||
Aluminum nitride (Aluminum Nitride, AlN) is an advanced ceramic material highly valued in high-tech industries for its excellent thermal conductivity and electrical insulation. Aluminum nitride also boasts high mechanical strength and stable chemical properties, making it an ideal choice for electronics and industrial applications.
1. Excellent Thermal Conductivity and Electrical Insulation
Aluminum nitride combines very high thermal conductivity with excellent electrical insulation, making it highly valuable in applications that require efficient heat dissipation alongside electrical isolation.
- Efficient Thermal Management Solutions: Aluminum nitride’s high thermal conductivity makes it an ideal heat dissipation material for high-performance electronic devices such as power semiconductors, high-density integrated circuits, and high-frequency electronic components. These applications often require materials to rapidly and effectively dissipate heat to prevent performance degradation or damage due to overheating.
- Electrical Applications: While maintaining high thermal conductivity, aluminum nitride also exhibits outstanding electrical insulation. This is crucial for insulation components in applications like power conversion equipment and high-voltage electrical applications, where materials need to efficiently transfer heat without conducting electricity.
2. Thermal Expansion Coefficient Matching Silicon and Excellent Plasma Resistance
Aluminum nitride’s thermal expansion coefficient closely matches that of silicon, a critical feature along with its plasma resistance, making it particularly important in semiconductor manufacturing.
- Semiconductor Manufacturing: Due to its thermal expansion coefficient matching silicon, aluminum nitride minimizes thermal stresses caused by temperature variations when used as substrates or thermal interface materials in semiconductor devices. This is essential for enhancing the reliability and performance of semiconductor devices.
- Plasma Resistance: During semiconductor processing, components often endure harsh plasma environments that can corrode or damage weaker materials. Aluminum nitride’s excellent plasma resistance allows it to maintain stability in these conditions, preserving both performance and structural integrity.
These characteristics of aluminum nitride underscore its critical importance in modern high-tech fields, particularly in high-performance electronic devices and semiconductor manufacturing. Its exceptional physical properties not only enhance equipment performance but also extend product longevity, providing reliable material solutions for a variety of demanding industrial applications.
| Type | Unit | Aluminum Nitride |
| Material | \ | ALN |
| Colour | \ | Gray |
| Density | g/cm3 | 3.3 |
| Type | Unit | Aluminum Nitride |
| Flexural Strength(20℃) | Mpa | 470 |
| Compressive Strength(20℃) | Mpa | 2100 |
| Modulus of Elastic(young)(20℃) | Gpa | 320 |
| Tracture Toughness(20℃) | MPam½ | 2.6 |
| Poi sion’s Ratio(20℃) | \ | 0.24 |
| Hardness HRA(20℃) | HRA | 87 |
| Vickers Hardness(HV1) | Gpa(kg/mm2) | 1122 |
| Rockwell Hardness(45N) | R45N | 78.5 |
| Type | Unit | Aluminum Nitride |
| Thermal Expansion Coefficient | 10-6K-1 | 4.6 |
| Thermal Conductivity(20℃) | W/mk | 170 |
| Thermal Shock Resistance | △T.℃ | 400 |
| Specific Heat Capacity | J/g·k | 0.72 |
| Max working Temperature(In Oxidizing) | ℃ | 1000 |
| Type | Unit | Aluminum Nitride |
| Vol une Resistivity at 20℃ | Ωcm | 2.75*1014 |
| Dielectric Strength | KV/mm | 17 |
| Dielectric Constant | \ | 8.38 |
| Dielectric LossAngle at 20℃,1MHz20℃ | tanδ | 3*10-3 |
*For more details, please feel free to contact our company.

Small Silicon Carbide Ceramic Crucible
Material:Silicon Carbide Ceramics
Describe:Custom small silicon carbide (SiC) ceramic crucibles offer stability and durability at high temperatures, ideal for reliable experiments and production.

High Temperature Resistant Alumina Ceramic Insulation Ring
Material:Alumina ceramics
Describe:High Temperature Resistant Alumina Ceramic Insulation Ring, also known as porous retaining rings, feature precise designs with drilled holes for secure connection. Their high hardness and strength ensure stability and durability under pressure, ideal for long-lasting equipment performance.

High Temperature Silicon Nitride Ceramics
Material:Silicon Nitride Ceramics
Describe:Our silicon nitride ceramic sealing rings are made of 99% high-purity Si₃N₄ material and are formed by hot pressing and sintering. They have super corrosion resistance (resistance to HF acid and molten aluminum) and high temperature resistance (continuous operation at 1200°C). They have a 50% longer service life than traditional silicon carbide sealing rings and are widely used in chemical...

Macor Ceramic Ferrule/Bush
Material:Macor Ceramic
Describe:Machinable ceramic Bush are a type of advanced ceramic material with excellent machining properties. They can be cut, drilled, milled, etc. on conventional machining equipment (such as CNC, lathes, and drilling machines) without the need for special diamond tools. They are widely used in precision electronics, semiconductors, medical and high-temperature insulation fields.

High Thermal Conductivity Alumina Ceramic Substrate
Material:Alumina ceramics
Describe:High Thermal Conductivity Alumina Ceramic Substrate, also known as porous retaining rings, feature precise designs with drilled holes for secure connection. Their high hardness and strength ensure stability and durability under pressure, ideal for long-lasting equipment performance.

Aluminum Nitride Precision Ceramic Accessories
Material:Aluminum Nitride Ceramics
Describe:Aluminum Nitride Precision Ceramic Accessories offer precise perforation for mechanical support, electrical insulation, and thermal management enhancement in precision applications.

